Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Thèses   /   Spectroscopie attoseconde de molécules en phase gazeuse et liquide

Spectroscopie attoseconde de molécules en phase gazeuse et liquide

Interactions rayonnement-matière Physique atomique et moléculaire Physique de l’état condensé, chimie et nanosciences

Résumé du sujet

Résumé :

L’étudiant-e utilisera les techniques laser attoseconde pour étudier les dynamiques ultrarapides de molécules en phase liquide et gazeuse. La photoionisation attoseconde en couche interne sera utilisée pour étudier en temps réel : les dynamiques de diffusion/réarrangement/transfert d’électrons, ainsi que les effets de solvatation.

Sujet détaillé :

Ces dernières années, la génération d’impulsions sub-femtosecondes, dites attosecondes (1 as=10-18 s), a connu des progrès spectaculaires. Ces impulsions ultrabrèves ouvrent de nouvelles perspectives d’exploration de la matière à une échelle de temps jusqu’alors inaccessible. Leur génération repose sur la forte interaction non linéaire d’impulsions laser infrarouges (IR) brèves (~20 femtosecondes) et intenses avec des gaz atomiques ou moléculaires. On produit ainsi les harmoniques d’ordre élevé de la fréquence fondamentale, sur une large gamme spectrale (160-10 nm) couvrant l’extrême ultraviolet (UVX). Cette radiation de haute énergie est capable d’ioniser des électrons localisés dans les couches internes des molécules. Dans le domaine temporel, ce rayonnement cohérent se présente comme des impulsions d’une durée de ~100 attosecondes [1].

Avec ces impulsions attosecondes, il devient possible d’étudier les dynamiques les plus rapides dans la matière, celles associées aux électrons, qui se déroulent naturellement à cette échelle de temps. La spectroscopie attoseconde permet ainsi l’étude de processus fondamentaux tels que la photo-ionisation et s’intéresse aux questions telles que : Combien de temps faut-il pour arracher un électron à un atome ou une molécule ? Et comment le nuage électronique se réarrange-t-il ? Ces questions sont devenues des sujets « chauds » dans la communauté scientifique mais ont pour le moment été étudiées dans des systèmes isolés, en phase gazeuse [2,3]. Des technologies d’échantillonnage de pointe nous permettent maintenant d’étudier ces dynamiques électroniques dans un milieu solvaté où le comportement des électrons sur ces échelles de temps attoseconde est inconnu. Quels transferts d’énergies ou bien d’électrons s’opèrent en 10-18 secondes ? Peut-on mesurer des effets de diffusion électronique dans un liquide ? Ces questions sont un nouveau challenge pour notre domaine sur le plan expérimental et théorique.

L’objectif de la thèse est tout d’abord de mettre en œuvre les techniques attosecondes établies en phase gazeuse en phase liquide. Deux détections complémentaires seront utilisées, la détection de photoélectron et l’absorption transitoire. En combinant les informations obtenues par chaque technique, nous serons capables de mesurer la diffusion du photoélectron après sa création mais aussi le devenir de la molécule ionisée : réarrangements/transferts d’électrons, effets de solvatation.

Le travail expérimental comprendra le développement et la mise en œuvre d’un dispositif, installé sur le laser FAB100 de l’Equipement d’Excellence ATTOLab, permettant : i) la génération de rayonnement attoseconde ; ii) sa caractérisation par interférométrie quantique ; iii) son utilisation en spectroscopie de photoionisation et d’absorption. Les aspects théoriques seront également développés. L’étudiant-e sera formé-e en optique ultrarapide, physique atomique et moléculaire, chimie quantique, et acquerra une large maitrise des techniques de spectroscopie UVX et de particules chargées. Des connaissances en optique, optique non linéaire, physique atomique et moléculaire, sont une base requise.

Le travail de thèse pourra donner lieu à des campagnes d’expériences dans des laboratoires français et européens associés (Hambourg-DESY).

Références :

[1] Y. Mairesse, et al., Science 302, 1540 (2003)

[2] V. Gruson, et al., Science 354, 734 (2016)

[3] A. Autuori, et al., Science Advances 8, eabl7594 (2022)

Laboratoire

Institut rayonnement et matière de Saclay
Service Laboratoire Interactions, Dynamique et Lasers
Attophysique
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down