Le sujet de la thèse porte sur l'étude expérimentale des propriétés macroscopiques et microscopiques du noyau du 96Zr. Récemment, l’observation d’un état déformé dans ce noyau magique a été explique par les calculs de la structure nucléaire en termes d'une réorganisation des couches nucléaires en fonction de leur remplissage par les protons et les neutrons. Selon ces calculs sophistiquées, le noyau du 96Zr présente une variété de formes ellipsoïdales à une faible énergie d'excitation, et il peut également prendre la forme de poire.
Nous étudierons ces formes variées en utilisant la puissante technique d'excitation coulombienne, qui est la méthode la plus directe pour déterminer la forme des noyaux dans leurs états excités. L'expérience sera réalisée à l'aide d'AGATA, un spectromètre gamma de nouvelle génération, constitué d'un grand nombre de cristaux de germanium finement segmentés, qui permet d'identifier chaque point d'interaction d'un rayon gamma a l’intérieur du détecteur puis, à l'aide du concept innovant du «gamma-ray tracking », permet de reconstruire les énergies de tous les rayons gamma émis et leurs angles d'émission avec une précision sans précédent. Une expérience complémentaire sera réalisée à TRIUMF (Vancouver, Canada) en utilisant le spectromètre le plus avancé au monde dédié aux mesures de désintégration bêta, appelé GRIFFIN. Ce projet fait partie d'un vaste programme expérimental de notre groupe sur l'évolution des formes de noyaux et leur coexistence.