Pourquoi l'Univers observable aujourd'hui est-il constitué de matière, sans aucune quantité significative d'antimatière ? Les neutrinos apportent un éclairage sur ce mystère cosmique.
En 2020, la collaboration T2K au Japon a publié dans le journal Nature de nouveaux résultats aboutissant à la meilleure contrainte à ce jour sur le degré d’asymétrie entre matière et antimatière dans les neutrinos. Les résultats de T2K excluent pour la première fois près de la moitié des valeurs possibles à 99.7% de niveau de confiance et la valeur la plus compatible avec les données corresponde à une asymétrie maximale entre la matière et l’antimatière, notemment entre les neutrinos et les antineutrinos. T2K a la meilleure sensitivité mondiale pour cette mesure et va collecter des nouvelles données dés 2023 avec un détecteur amélioré à la recherche d’une possible découverte de violation de symétrie.
T2K est une expérience sur les neutrinos conçue pour étudier le passage des neutrinos (et des antineutrinos) d'une saveur à une autre au cours de leur voyage (oscillations des neutrinos). Un faisceau intense de neutrinos muoniques est généré sur le site de J-PARC sur la côte est du Japon et dirigé vers le détecteur de neutrinos Super-Kamiokande dans les montagnes de l'ouest du Japon. Le faisceau est mesuré une fois avant de quitter le site du J-PARC, à l'aide du détecteur proche ND280, et à nouveau à Super-Kamiokande: l'évolution de l'intensité mesurée et de la composition du faisceau est utilisée pour déterminer les propriétés des neutrinos.
Les travaux de la thèse comprendront deux volets: l’analyse des données pour la mesure des oscillation des (anti)neutrinos et la mise en service et l'exploitation scientifique de la chambre de projection temporelle à grand angle (TPC à grand angle). L'objectif de ce nouveau détecteur est d'améliorer les performances du détecteur proche ND280, de mesurer le taux de production et d'interaction des neutrinos afin que l'incertitude sur le nombre d'événements prédits à Super-Kamiokande soit réduite à environ 4%.
Dans un premier temps, l’étudiant utilisera les données cosmiques pour aligner les modules de la TPC. Ensuite, il exploitera les premières données pour calibrer la TPC et évaluer ses performances.
L’étudiant travaillera sur l'analyse des nouvelles données de T2K pour mesurer la violation de symétrie entre matière et antimatière dans l'oscillation des neutrinos. La jouvence du détecteur proche nécessitera la mise en place d'une nouvelle stratégie d'analyse. Pour la première fois, la mesure des protons et neutrons de faible impulsion produits par les interactions de neutrinos sera exploitée. En parallèle, une autre partie importante de l'analyse qui doit être revisitée pour faire face à l'augmentation des statistiques, est la modélisation du flux de neutrinos produits par la ligne de faisceau de l'accélérateur.
Une nouvelle génération d'expériences devrait multiplier d'un facteur 20 la production de données dans les prochaines décennies. Au Japon, l’expérience Hyper-K, et aux USA, l’expérience DUNE, seront opérationnelles vers les années 2027-2028. Le travail proposé dans cette thèse ouvrira des nouvelles stratégies d’analyse essentielles pour cette prochaine génération expérience. Si leurs nouvelles données confirment les résultats préliminaires de T2K, les neutrinos pourraient bien apporter avant dix ans une clé pour résoudre le mystère de la disparition de l'antimatière dans notre Univers.