Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Thèses   /   Modélisation et prédiction des émissions électromagnétiques des convertisseurs de puissance par deep learning

Modélisation et prédiction des émissions électromagnétiques des convertisseurs de puissance par deep learning

Défis technologiques Electromagnétisme - Electrotechnique Sciences pour l’ingénieur Simulation numérique

Résumé du sujet

Ces dernières années, la compatibilité électromagnétique (CEM) dans les convertisseurs de puissance à semi-conducteurs à 'wide bandgap' (WBG) a suscité un intérêt croissant, en raison des vitesses de commutation élevées et des fréquences accrues qu’ils permettent. Si ces dispositifs améliorent la densité et l’efficacité des systèmes, ils engendrent également des émissions conduites et rayonnées plus complexes à maîtriser. Dans ce contexte, cette thèse porte sur la prédiction, la modélisation et la caractérisation des interférences électromagnétiques (EMI)(> 30 MHz), tant conduites que rayonnées, dans des systèmes électroniques de puissance opérant à haute fréquence. Elle s’appuie sur une méthode de découpage multi-sous-systèmes et une co-simulation itérative, combinée à une caractérisation in situ pour capturer les phénomènes non idéaux et non linéaires. En complément, des techniques deep learning sont utilisées pour modéliser le comportement EMI à partir de données mesurées et simulées. Generative AI est également exploitée pour générer automatiquement des configurations représentatives et variées que l’on peut rencontrer en électronique de puissance, permettant ainsi d’explorer efficacement un large spectre de scénarios EMI. Cette approche vise à renforcer la précision des analyses tout en accélérant les phases de simulation et de conception.

Laboratoire

Département de l’Electricité et de l’Hydrogène pour les Transports (LITEN)
Service Transverses pour Technologies de Conversion électrochimique et électrique
Laboratoire Electronique Enérgie et Puissance
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down