Pour accomplir une tâche inconnue, un sujet (humain ou robot) doit consulter des informations externes, ce qui implique un coût cognitif. Après plusieurs expériences similaires, il maîtrise la situation et peut agir automatiquement. Les années 1980 et 1990 ont vu des explorations en IA avec des schémas et graphes conceptuels, mais leur mise en œuvre à grande échelle était limitée par la technologie de l'époque.
Les modèles neuronaux actuels, notamment les transformers et les LLM/VLM, apprennent des représentations universelles grâce à un préentraînement sur d'énormes quantités de données. Ils peuvent être utilisés avec des prompts pour fournir un contexte local. L'affinage (fine-tuning) permet de spécialiser ces modèles pour des tâches spécifiques.
Les méthodes de type RAG et GraphRAG permettent d'exploiter des connaissances externes, mais leur utilisation à l'inférence est coûteuse en ressources. Cette thèse propose une approche cognitiviste dans laquelle le système effectue un apprentissage continu. Il consulte des sources externes lors de l'inférence et utilise ces informations pour s'affiner régulièrement, comme pendant le sommeil. Cette méthode vise à améliorer la performance et réduire la consommation de ressources.
Chez l'humain, ces processus sont liés à l'organisation spatiale du cerveau. La thèse étudiera également des architectures de réseaux inspirées de cette organisation, avec des "zones" dédiées mais interconnectées, comme les modèles vision-langage et langage-seul partageant des couches transformers.
Ces concepts peuvent être appliqués aux projets Astir et Ridder, visant à exploiter les modèles de fondation pour l'ingénierie logicielle en robotique et le développement de méthodes d'IA générative pour la commande sécurisée de robots.