



Le sujet de la thèse porte sur le processus de charge rapide des batteries lithium-ion et, plus particulièrement, le phénomène de lithium plating qui sera étudié grâce à la RMN operando. L’application visée est donc la mobilité électrique. L’objectif de la thèse est d’étudier la dynamique d’insertion du lithium et de dépôt de lithium métal à l’électrode négative à base de graphite (ou de graphite/silicium) afin de comprendre les mécanismes conduisant à la formation du plating.
La technique privilégiée est la RMN operando car elle offre la possibilité unique de suivre en même temps les signaux des phases lithiées du graphite et du lithium métallique déposé en cours des processus électrochimiques. Le couplage de l’électrochimie et la RMN operando nous permettra de déterminer l’onset du plating, c’est-à-dire le potentiel de l’électrode négative pour lequel le dépôt s’amorce, et la cinétique de dépôt et de réinsertion du lithium métallique et cela, à différentes températures et différents régimes de courant en charge. Nous étudierons à la fois des systèmes Li-ion constitués d’une électrode négative en graphite pur mais également en graphite-silicium afin d’étudier l’impact du silicium sur ce phénomène. Les données obtenues sur les mécanismes d’onset et les cinétiques de dépôt et de réinsertion du lithium métallique seront implémentées dans un modèle multiphysique déjà développé au laboratoire afin d’améliorer la prédiction de l’onset du plating. Nous serons ensuite à même d’évaluer les gains en chargeabilité sur un système NMC 811 // Gr+Si intégrant des électrodes optimisées et de proposer des protocoles de charges innovants.

