



Initialement associées aux maladies neurodégénératives, les protéines de type prion (PrLP) sont aujourd’hui reconnues comme des acteurs physiologiques majeurs de la plasticité cellulaire et de la réponse au stress. Ces protéines possèdent souvent un domaine intrinsèquement désordonné riche en glutamine et asparagine, dit prion-like domain (PrLD), capable de basculer entre états solubles, condensés ou amyloïdes. Des exemples emblématiques incluent CPEB chez l’Aplysie, impliquée dans la mémoire synaptique, MAVS dans la réponse antivirale, MED15 et FUS dans la régulation transcriptionnelle et la dynamique des condensats nucléocytoplasmiques, ou encore ELF3 chez les plantes, dont la polymérisation amyloïde contrôle la floraison et la photopériode. Chez les champignons, les protéines Sup35, Ure2p et HET-s constituent des modèles expérimentaux de prions fonctionnels, montrant que l’agrégation réversible peut servir de mécanisme de régulation ou d’adaptation. Ces transitions conformationnelles sont désormais perçues comme des réponses adaptatives, et non comme des dérives pathologiques. Cette thèse vise à retracer l’origine et la diversification des protéines de type prion à l’échelle des eucaryotes, en testant l’hypothèse selon laquelle les grandes crises paléoclimatiques ont favorisé l’apparition et la duplication de gènes codant des domaines PrLD via l’expansion de microsatellites et l’activité des éléments transposables. Le projet combinera analyses phylogénomiques, détection de domaines PrLD et modélisation des pressions de sélection, afin de cartographier les grandes étapes de l’évolution fonctionnelle des PrLP et leur lien avec la tolérance au stress.

