



Le comportement mécanique des matériaux métalliques sous sollicitation fortement dynamique (choc), et en particulier leur endommagement, est une thématique d'intérêt pour le CEA-DAM. Pour le tantale, l'endommagement est de nature ductile : par germination, croissance et coalescence de pores (vides) au sein du matériau. Les modèles usuels d'endommagement ductiles ont été développés à partir d'hypothèses simplificatrices de pores isolés dans la matière. Cependant des études récentes par simulations directes décrivant explicitement une population de pores répartis dans le matériau (ainsi que des observations expérimentales après rupture) ont montré l'importance de l'interaction entre pores pour la prévision de l'endommagement ductile. Toutefois, les mécanismes microscopiques de cette interaction restent à élucider. De plus, ces études numériques doivent être étendues aux échelles de longueur et de vitesses de sollicitation d'intérêt.
L'objectif de la thèse est d'étudier les phases de croissance et de coalescence de l'endommagement ductile au travers de simulations numériques directes d'un milieux poreux soumis à une sollicitation dynamique. Des simulations hydrodynamiques, dans lesquelles des pores seront maillés explicitement au sein d'une matrice continue, seront utilisées afin de se placer aux échelles d'intérêt de temps et de longueur. Le suivi de la population de pores au cours de la simulation renseignera à différents niveaux sur l'influence de l'interaction entre pores pendant l'endommagement ductile. D'abord, le comportement du massif sera comparé à celui prédit par les modèles classiques à pores isolés, montrant l'effet macroscopique de l'interaction entre pores. On s'intéressera également à l'évolution de la distribution de tailles dans la population de pores. Enfin, un dernier objectif sera de comprendre l'interaction microscopique pore à pore. Afin de tirer parti de la richesse des résultats de simulation, des approches issues de l'intelligence artificielle (réseau de neurones sur le graphe associé à la population de pores) seront utilisées afin d'apprendre le lien entre voisinage d'un pore et croissance de celui-ci.
Le/la doctorant(e) aura l'occasion de développer ses compétences en physique des chocs et en mécanique, en simulations numériques (avec l'accès aux supercalculateurs du CEA-DAM) et en science des données.

