



Sachant que les rares antinoyaux présents dans l'espace pourraient contenir des informations sur des mécanismes de production exotiques (e.g. annihilation ou désintégration de la matière noire), leur étude est devenue un domaine à fort impact, reliant physique nucléaire, astroparticule et mesures (accélérateurs). Cependant, l'interprétation des recherches actuelles et futures sur les antinoyaux est limitée par le manque de données nucléaires : les processus de diffusion à basse énergie, d'annihilation et de désintégration des antinoyaux sur la matière ordinaire sont difficiles à mesurer directement. Cela motive une stratégie fondée sur la théorie. Notre projet adopte une approche "bottom-up" : description ab initio des systèmes nucléaires et des collisions d'antimatière les plus simples à basse énergie, identification des mécanismes sous-jacents d'annihilation à plusieurs corps, puis propagation de ces contraintes à la modélisation des interactions à l'échelle du noyau et à des énergies plus élevées. Nous visons à la fois à approfondir notre compréhension des interactions matière-antimatière au niveau nucléaire et à fournir des données validées pour les outils de simulation utilisés en astroparticules et pour les accélérateurs.
Transfert entre les deux champs : nous simplifions le problème pour le ramener au cas le plus simple pouvant être traité par la méthode ab initio, car dans INCL (Intra NuclearCascade of Liège), l'annihilation de l'antideuton est identifiée comme une annihilation avec un quasi-deuton dans un noyau cible. Deux questions clés doivent être abordées en partie à l'aide de calculs ab initio : 1. Quel quasi-deutéron interagira ? 2. Quel canal de sortie en résultera ?

