Les avancées en matériaux, architectures de transistors et technologies de lithographie ont permis une croissance exponentielle des performances et de l’efficacité énergétique des circuits intégrés. De nouvelles voies, dont le fonctionnement à température cryogénique, pourraient permettre de nouvelles avancées. L’électronique cryogénique, nécessaire pour manipuler des Qubits à très basse température, est en plein essor. Des processeurs à 4.2 K utilisant 1.4 zJ par opération ont été proposés, basés sur l’électronique supraconductrice. Une autre approche consiste à réaliser des processeurs séquentiels très rapides en utilisant des technologies spécifiques et la basse température, réduisant la dissipation énergétique mais nécessitant un refroidissement. À basse température, les performances des transistors CMOS avancés augmentent, permettant de travailler à plus basse tension et d’augmenter les fréquences de fonctionnement. Cela pourrait améliorer l’efficacité séquentielle des calculateurs et simplifier la parallélisation des codes informatiques. Cependant, il faut repenser les matériaux et l’architecture des composants et circuits pour maximiser les avantages des basses températures. Le projet post-doctoral vise à déterminer si la température cryogénique offre un gain de performances suffisant pour le CMOS ou si elle doit être vue comme un catalyseur pour de nouvelles technologies de calcul haute performance. L’objectif est notamment d’évaluer l’augmentation de la vitesse de traitement avec des composants silicium conventionnels à basse température, en intégrant mesures et simulations.