Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Post Doctorat   /   Compréhension et modélisation des propriétés thermodynamiques et cinétiques du combustible MOX dans les réacteurs du futur

Compréhension et modélisation des propriétés thermodynamiques et cinétiques du combustible MOX dans les réacteurs du futur

Matériaux et applications Matière ultra-divisée, physico-chimie des matériaux Physique de l’état condensé, chimie et nanosciences Sciences pour l’ingénieur

Résumé du sujet

Cette étude s’inscrit dans le cadre des projets de Réacteur à Neutrons Rapides à caloporteur sodium. Le dioxyde d’uranium et de plutonium (U,Pu)O2, appelé MOX, est le combustible de référence. En fonctionnement, les pastilles de combustible sont soumises à un fort gradient thermique qui induit des phénomènes de transport, de thermo-diffusion et de vaporisation, couplés à des effets d’irradiation. Les codes de performance des combustibles sont développés pour simuler le comportement des aiguilles de combustible en condition nominale et incidentelle, jusqu’à la fusion.
L’objectif de cette étude est d’améliorer le modèle thermocinétique du MOX utilisé dans ces codes. Ce modèle repose sur la description du système U-Pu-O avec la méthode CALPHAD, couplée à une base de données de mobilités des éléments, développée avec le logiciel DICTRA. La description des défauts sera étendue avec l’introduction des lacunes métalliques et de clusters d’oxygène. La description des données thermodynamiques (potentiel d’oxygène et capacité thermique) et du diagramme de phase sera également améliorée en prenant en compte les données les plus récentes. Enfin, la base de données de mobilité, couplée au modèle Calphad, sera améliorée pour mieux décrire la diffusion dans le MOX. Les nouvelles données expérimentales mais aussi les données calculées par des méthodes de calcul à l’échelle atomique (dynamique moléculaire, ab-initio) seront utilisées.

Laboratoire

Département de Recherche sur les Matériaux et la Physico-chimie pour les énergies bas carbone
Service de recherche en Corrosion et Comportement des Matériaux
Laboratoire de Modélisation, Thermodynamique et Thermochimie
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down