Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Post Doctorat   /   Développement d'approches pour l'intelligence artificielle à base de bruit

Développement d'approches pour l'intelligence artificielle à base de bruit

Data intelligence dont Intelligence Artificielle Défis technologiques Informatique et logiciels Sciences pour l’ingénieur

Résumé du sujet

Les approches actuelles de l'IA sont largement basées sur la multiplication matricielle. Dans le de ce projet postdoccadre toral, nous aimerions poser la question suivante : quelle est la prochaine étape ? Plus précisément, nous aimerions étudier si le bruit (stochastique) pourrait être la primitive computationnelle sur laquelle la nouvelle génération d'IA est construite. Nous répondrons à cette question en deux étapes. Tout d'abord, nous explorerons les théories concernant le rôle computationnel du bruit microscopique et au niveau du système dans les neurosciences, ainsi que la façon dont le bruit est de plus en plus exploité dans l'intelligence artificielle. Nous visons à établir des liens concrets entre ces deux domaines et, en particulier, nous explorerons la relation entre le bruit et la quantification de l'incertitude.
Sur cette base, le chercheur postdoctorant développera ensuite de nouveaux modèles qui exploitent le bruit pour effectuer des tâches cognitives, dont l'incertitude est une composante intrinsèque. Cela ne servira pas seulement comme une approche d'IA, mais aussi comme un outil informatique pour étudier la cognition chez les humains et aussi comme un modèle pour des zones spécifiques du cerveau connues pour participer à divers aspects de la cognition, de la perception à l’apprentissage, la prise de décision et la quantification de l'incertitude.
Les perspectives du projet postdoctoral devraient informer sur la manière dont l'imagerie IRMf et les enregistrements électrophysiologies invasifs et non invasifs peuvent être utilisés pour tester les théories de ce modèle. En outre, le candidat devra interagir avec d'autres activités du CEA liées au développement d'accélérateurs d'IA analogiques basés sur le bruit.

Laboratoire

Département Systèmes et Circuits Intégrés Numériques (LIST)
DSCIN
Laboratoire Intelligence Intégrée Multi-capteurs
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down