Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Post Doctorat   /   Distribution des energies d’hydrolyse dans des verres modèles par simulation moléculaire et Machine Learning

Distribution des energies d’hydrolyse dans des verres modèles par simulation moléculaire et Machine Learning

Physique de l’état condensé, chimie et nanosciences Physique du solide, surfaces et interfaces

Résumé du sujet

L'objectif de ce projet est de développer un outil basé sur la modélisation moléculaire combinée à des techniques de Machine Learning pour estimer rapidement des distributions d'énergie d'hydrolyse et de reformation des liaisons chimiques à la surface de verres alumino silicates (SiO2+Al2O3+CaO+Na2O).
La première étape consistera à valider les champs de force classiques utilisés pour préparer des systèmes SiO2-Al2O3-Na2O-CaO hydratés par comparaison avec des calculs ab initio. La métadynamique sera utilisée pour comparer les mécanismes élémentaires.
L'étape suivante consistera à effectuer des calculs avec les champs de force classiques et la méthode dite "Potential Mean Force" pour estimer les distributions d'énergies d'hydrolyse et de reformation des liaisons chimiques sur de larges statistiques. Puis, grâce aux approches de Machine Learning et aux descripteurs structuraux, nous essaierons de corréler les caractéristiques des environnements locaux et ces énergies d'hydrolyse et de reformation des liaisons. Des méthodes comme le "Kernel Ridge Regression", le "Random Forrest", ou le "Dense Neural Network" seront comparées.
Au final, un outil générique sera disponible pour prédire rapidement les distributions des énergies d'hydrolyse et de reformation des liaisons pour une composition donnée de verre.

Laboratoire

Département de recherche sur les technologies pour l’enrichissement, le démantèlement et les déchets
Service d’études de vitrification et procédés hautes températures
Laboratoire d’études du comportement à long terme des matériaux de conditionnement
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down