Dans l’optique d’étendre l’autonomie des véhicules électriques, les recherches se tournent actuellement vers l’utilisation de nouvelles chimies du lithium, notamment à base de soufre. En effet, la technologie lithium/soufre devrait permettre, à terme, d’atteindre des densités d’énergie de l’ordre de 600 Wh.kg-1. L’intérêt d’un tel système viendrait également de l’utilisation de soufre élémentaire en tant que matériau actif, qui présente l’avantage d’être à la fois abondant et bon marché. En développement depuis les années 70, les limitations de l’accumulateur Li/S n’en restent pas moins nombreuses: soufre isolant électronique, soufre et intermédiaires de décharge solubles dans l’électrolyte, produit de fin de charge insoluble et isolant électronique.
Ce sujet de post-doctorat se propose donc d’étudier l’intérêt des nanotubes de carbone pour l’électrode positive de soufre. Plus exactement, l’idée est de combiner :
- Les nanotubes de carbone pour assurer une bonne conductivité électronique de l’électrode positive, mais également pour servir de substrat au greffage de la matière soufrée.
- Les ponts disulfures, qui seront greffées par voie chimique sur ces nanotubes. L’existence de ponts disulfures permettra à la réaction électrochimique de se produire comme dans un accumulateur lithium/soufre conventionnel (rupture S-S), tout en conservant un point d’accroche du soufre sur la surface du NTC. Ainsi greffé, le soufre ne sera plus soluble dans l’électrolyte organique, et une majorité des problématiques liées à l’accumulateur lithium/soufre serait alors contournée : perte de capacité, autodécharge, faible efficacité coulombique.