Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Post Doctorat   /   Ingénieur-chercheur / Post-doctorant (H/F) traitement du signal, IA et logiciel pour une application prédiction et traitement épilepsie en boucle ferme par refroidissement localisée

Ingénieur-chercheur / Post-doctorant (H/F) traitement du signal, IA et logiciel pour une application prédiction et traitement épilepsie en boucle ferme par refroidissement localisée

Biotechnologie, biophotonique Défis technologiques Sciences pour l’ingénieur Technologies pour la santé et l’environnement, dispositifs médicaux

Résumé du sujet

A ce jour, aucune étude n'a mis en évidence la possibilité d’utiliser la prédiction/prévision des crises d’épilepsie comme déclencheur de thérapeutiques en boucle fermée pour le traitement de l’épilepsie pharmaco-résistante.
Notre solution de prédiction/prévision de crises repose sur des algorithmes développés pour décoder des signaux neurologiques du cortex moteur déjà utilisés en clinique (essai clinique ‘BCI et tétraplégie’, NCT02550522) et qui peuvent être appliqués pour générer des prévisions de survenue des crises. Concernant les algorithmes du BCI moteur, nous avons publié et breveté des algorithmes de décodage en temps réel sur des patients tétraplégiques, contrôlant 8 degrés de liberté. Ils peuvent être adaptées à la prédiction des crises d’épilepsie. Notre hypothèse de travail est que le traitement pendant des périodes de haut risque d’occurrence des crises (et non pendant les crises elles-mêmes) va permettre réduire les doses thérapeutiques à administrer. Cette approche va rendre possible l’utilisation de systèmes implantables autonomes, en aidant à réduire la consommation d’énergie de ces systèmes. Las algorithmes de décodage vont être potentiellement ré-spécifié pour améliorer leur réponse à la tache de prédiction des crises épileptiques. Ils seront comparés à l’état de l’art des approches CNN (convolutional neural networks), ainsi qu’à d’autres solutions existantes. Ils seront évalués en utilisant un modèle de primates non-humains épileptiques développé a Clinatec. Ce modèle permettra également de tester l’efficacité des algorithmes pour prévenir la survenue des crises par un traitement non-pharmacologique basé sur le refroidissement localisé intra-cortical, en développement à Clinatec.
Le système de décodage neuronal est intégré dans un environnement logiciel qui permet le traitement du signal neuronal et peut émettre les commandes de contrôle à des dispositifs externes.
Le Post-Doctorat sera porté par le CEA-LETI-Clinatec en collaboration avec

Laboratoire

Clinatec (LETI)
Clinatec (LETI)
Clinatec (LETI)
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down