Historiquement, le photovoltaïque s’est développé conjointement avec l’essor de l’exploration spatiale. Au cours des années 90, les cellules solaires III-V multi-jonctions ont progressivement remplacé le silicium, bénéficiant de performances et tenue aux irradiations supérieures. Aujourd’hui, le contexte est favorable à un renouveau du Si spatial : besoins de puissance PV croissants, missions à durées & contraintes modérées (LEO), cellules Si terrestres très bas coût & performante (type-p > 26% AM1.5g). Cependant, pour les cellules Si les méthodes et séquences de vieillissement sous irradiations classiques (ECSS) sont moins appropriées. La littérature datant principalement des années 1980 – 2000, il faudra revisiter la thématique avec les cellules Si dernière génération à contacts passivés (élaborées à l’INES) et les moyens uniques d’irradiation double faisceau du CEA (plateforme JANNuS du CEA Saclay).
Ces travaux s’inscrivent dans le cadre du projet SiNRJs à l’interface entre deux directions du CEA, sur les thématiques photovoltaïques spatial & irradiations matériaux. L’approche scientifique et technologique adoptée: 1. Fabrication de cellules Si à contacts passivés (HeT et/ou Poly-Si) d’épaisseur variable 2. Caractérisations optoélectroniques des propriétés des cellules avant irradiations (IV AM1.5/AM0, EQE, etc.) 3. Irradiations protons des cellules et échantillons, caractérisations in situ (Raman et Electroluminescence) 4. Caractérisations ex situ des propriétés optoélectroniques des cellules après irradiations (IV AM1.5/AM0, EQE, etc) 5. Analyse et synthèse des résultats. Scientifiquement, les verrous à lever concernent donc la compréhension des mécanismes/dynamiques de création/guérison de défauts sous cette double excitation électronique et balistique.