Le CEA-LIST développe la plateforme logicielle CIVA, référence de la simulation des procédés de contrôle non destructif. Elle propose notamment des outils pour l’inspection radiographique X et tomographique qui permettent, pour un contrôle tomographique donné, de simuler l’ensemble des projections radiographiques (ou sinogramme) en prenant en compte divers phénomènes physiques associés, ainsi que la reconstruction tomographique correspondante.
Le travail proposé s’intègre dans la contribution du laboratoire à un projet européen qui porte sur l’inspection tomographique de containers de transport de marchandise avec des systèmes d’inspection utilisant des sources de haute énergie. Les contraintes spatiales de l’étape d’acquisition des projections (les camions transportant les containers passent dans un portique d’inspection) impliquent une adaptation de la géométrie du système source/détecteur et par conséquent de l’algorithme de reconstruction correspondant. De plus, le système ne peut générer qu’un nombre de projections réduit, ce qui rend le problème mal posé dans le contexte de l’inversion.
Les contributions attendues portent sur deux aspects distincts de la méthodologie de reconstruction à partir des données acquises. D’une part, il s’agit d’adapter les méthodes de reconstruction analytiques à la géométrie d’acquisition spécifique de ce projet, et d’autre part de travailler sur des méthodes permettant de pallier le manque d’information lié au nombre limité de projections radiographiques. Dans cet objectif, des méthodes d’apprentissage supervisé, plus spécifiquement par Deep-Learning, seront utilisées à la fois pour compléter le sinogramme, et pour réduire les artéfacts de reconstruction causées par le faible nombre de projections disponible. Une contrainte d’adéquation aux données et au système d’acquisition sera également introduite afin de générer des projections physiquement cohérentes.