La théorie de la fonctionnelle de la densité dans le formalisme de Kohn-Sham (DFT) est l’une des méthodes les plus répandues pour simuler les propriétés microscopiques en physique et en chimie du solide. Son principal avantage réside dans sa capacité à trouver un équilibre favorable entre précision et coût de calcul. L’évolution continue des techniques numériques, de plus en plus efficaces, a constamment élargi la portée de son applicabilité.
Parmi ces techniques qui peuvent être associées à la DFT, l’apprentissage automatique est de plus en plus utilisé. Aujourd’hui, une application très répandue consiste à produire des potentiels capables de prédire les interactions entre les atomes en utilisant des modèles d’apprentissage supervisés, s’appuyant sur des propriétés produites en DFT.
L’objectif du projet proposé dans le cadre de cette thèse est d’utiliser les techniques d’apprentissage automatique à un niveau approfondi, notamment pour prédire la densité électronique dans les cristaux ou les molécules. Comparativement à la prédiction de propriétés telles que les forces entre atomes, calculer la densité électronique pose des difficultés : la densité électronique est de haute dimension puisqu’elle doit être calculée dans tout l’espace ; ses caractéristiques sont très variables d’un matériau à l’autre (métaux, isolants, transferts de charge…). Au final, cela peut représenter un coût de calcul non négligeable. Il existe plusieurs options pour réduire la dimensionnalité de la densité électronique, comme le calcul de projections ou l’utilisation de fonctions de localisation.
L’enjeu final de ce projet est de pouvoir prédire, avec la meilleure précision possible, la densité électronique, afin de l’utiliser comme base de prédiction ou point de départ pour des calculs de propriétés spécifiques aux électrons (magnétisme, structure de bandes, par exemple).
Dans un premier temps, le/la candidat·e pourra implémenter des méthodes récemment proposées dans la littérature ; dans une seconde partie de la thèse, il faudra proposer des idées nouvelles. Enfin, la méthode implémentée sera utilisée pour accélérer la prédiction de propriétés de systèmes de grande taille et impliquant des transferts de charge, comme la migration de défauts dans les cristaux.