L'accident de perte de réfrigérant primaire (APRP) dans les réacteurs à eau pressurisée (REP) entraîne des phénomènes transitoires rapides, tels que la propagation d'ondes de raréfaction dans les structures internes du réacteur. Ces ondes provoquent des charges de pression transitoires entre différentes zones, comme le cœur du réacteur et la zone de by-pass, ce qui exerce des contraintes sur le cloisonnement. La déformation de cette structure critique peut compromettre l'intégrité structurelle du réacteur et compliquer la manipulation des assemblages de combustible, notamment leur retrait après l'accident.
Le principal objectif scientifique est de développer, implémenter et valider de nouveaux modèles numériques permettant de simuler de manière plus précise la propagation des ondes de raréfaction à travers des obstacles complexes. L’état de l’art actuel repose sur des modèles simplifiés, validés uniquement pour des configurations simples comme les plaques à simple orifice (diaphragmes). Cependant, il existe un besoin d’élargir ces modèles à des géométries plus complexes, telles que les plaques à trous multiples, en utilisant différents méthodes numériques.
L’élaboration d’un modèle de porosité pour représenter les assemblages combustibles est également cruciale. Les résultats attendus seront validés expérimentalement et ont des applications directes pour les partenaires industriels EDF et Framatome, renforçant l'intérêt industriel de cette recherche.
La thèse adoptera une approche combinée, à la fois expérimentale et numérique. L’utilisation de la plateforme MADMAX permettra de tester différents obstacles complexes et de recueillir des données expérimentales détaillées grâce à des capteurs spécialisés. Ces données serviront à valider les modèles numériques développés dans le logiciel EUROPLEXUS. De plus, les simulations incluront des approches novatrices telles que un nouveau modèle de porosité pour les structures internes des réacteurs. La participation à des conférences internationales et la publication des résultats sont prévues pour assurer la diffusion scientifique des avancées.
La thèse se déroulera au laboratoire DYN du CEA Paris-Saclay, qui dispose d’équipements expérimentaux uniques, comme la plateforme MADMAX, et d’une forte expertise en modélisation numérique. Plusieurs collaborations industrielles (EDF, Framatome) et académiques offriront un environnement riche pour le doctorant, avec des échanges réguliers au sein de réseaux internationaux.
Le candidat idéal devra avoir de solides compétences en mécanique des fluides, dynamique des structures, modélisation numérique (éléments finis, volumes finis), et en programmation. Une première expérience avec des outils comme EUROPLEXUS sera un plus. Un stage de M2 pourra être proposé pour familiariser le candidat avec les méthodes et outils utilisés dans cette thèse.
Cette thèse permettra au doctorant d’acquérir des compétences hautement spécialisées en interactions fluide-structure, modélisation numérique et expérimentation dans un contexte industriel. Ces compétences sont très recherchées dans les secteurs de l’énergie, de l’aéronautique et des technologies de simulation avancée, ouvrant la voie à des carrières dans la recherche appliquée ou l’ingénierie dans l’industrie.