La corrosion sous contrainte (CSC) des aciers inoxydables est l'un des principaux phénomènes de dégradation des composants du circuit primaire des Réacteurs à Eau Pressurisée(REP). La compréhension de ce mécanisme de fissuration est d’une nécessité absolue pour la prolongation de la durée d’exploitation des réacteurs. Avec un nombre important de paramètres critiques qui influent sur la sensibilité du matériau à la CSC et la présence de forts effets de couplage, une grille d’essais expérimentaux assez conséquente est souvent envisagée pour aider à la compréhension du mécanisme. Il est proposé dans ce projet d’adopter une approche nouvelle basée sur l’utilisation de modèles interprétables, avec pour but d’éviter les longues et couteuses étapes de recherches en ciblant des essais pertinents et des paramètres matériaux pouvant améliorer les performances en environnement. L’enjeu ici sera d’ajouter à l’approche expérimentale les performances d’un outil d’intelligence artificielle avec pour objectifs de définir des domaines de sensibilité à l’amorçage de CSC en fonction des paramètres critiques identifiés dans le modèle, et de fournir des données relatives à l’élaboration de nouveaux matériaux par fabrication additive.
La thèse sera consacrée au développement d’un outil numérique adapté à ce nouveau cas d’usage et à la poursuite des activités expérimentales nécessaires à la validation de cette nouvelle approche. Il s’agira d’explorer les contributions de l’intelligence artificielle dans le domaine de la corrosion sous contrainte sur plusieurs volets : l'identification des paramètres au premier ordre sur la sensibilité du matériau, l'évaluation des domaines de criticité à la CSC et l'aide à la compréhension des mécanismes physiques à l’origine de la fissuration.