Les modèles du monde sont des représentations internes de l'environnement externe qu'un agent peut utiliser pour interagir avec le monde réel. Ils sont essentiels pour comprendre les lois physiques qui régissent les dynamiques du monde réel, faire des prédictions et planifier des actions à long terme. Les modèles du monde peuvent être utilisés pour simuler des interactions réelles et améliorer l'interprétabilité et l'explicabilité du comportement d'un agent dans cet environnement, ce qui en fait des composants clés pour les modèles avancés d'agents autonomes.
Néanmoins, la construction d'un modèle du monde précis reste un défi. L'objectif de cette thèse de doctorat est de développer une méthodologie pour apprendre les modèles du monde et étudier leur utilisation dans le contexte de la conduite autonome, en particulier pour la prévision des mouvements et le développement d'agents autonomes pour la navigation.