Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Thèses   /   Caractérisation chimique 3D de dispositifs ePCM par tomographie STEM-EDX et intelligence artificielle

Caractérisation chimique 3D de dispositifs ePCM par tomographie STEM-EDX et intelligence artificielle

Défis technologiques Instrumentation Nano-caractérisation avancée Sciences pour l’ingénieur

Résumé du sujet

Cette thèse s'inscrit dans le contexte du progrès récent de la technologie des mémoires à changement de phase dans les applications embarquées (ePCM). La miniaturisation des ePCM pour des nœuds inférieurs à 18nm pose de nombreux défis non seulement dans la fabrication, mais aussi dans la caractérisation physico-chimique de ces dispositifs. L'objectif du projet est d'étudier les phénomènes de ségrégation chimique et de cristallisation en 3D dans les nouveaux alliages PCM intégrés dans des dispositifs ePCM planaires et verticaux, en utilisant la tomographie électronique en mode STEM-EDX (et 4D-STEM). Compte tenu de l'extrême miniaturisation et de la géométrie complexe des dispositifs, l'accent sera mis sur l'optimisation des conditions expérimentales et sur l'application de techniques de machine learning et d'apprentissage profond pour améliorer la qualité et la fiabilité des résultats 3D obtenus. Une corrélation avec le comportement électrique du dispositif sera effectuée pour mieux comprendre les phénomènes à l'origine des défaillances après endurance et après perte de données à haute température.
Un TEM NeoARM Cold-FEG corrigé par sonde (60kV-200kV) sera utilisé pour l'acquisition des données tomographiques. Il est équipé de deux détecteurs SSD à grand angle solide (JEOL Centurio), d'un filtre en énergie CEOS (CEFID) et d'une caméra à détection directe (Timepix3). Le candidat aura également accès aux codes Python développés en interne ainsi qu'aux ressources informatiques nécessaires pour effectuer l'analyse des données spectrales et tomographiques.

Laboratoire

Département des Plateformes Technologiques (LETI)
Service de Métrologie et de Caractérisation Physique
Laboratoire Microscopie Mesures et Défectivité
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down