Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Thèses   /   De l’Angström au micron : un modèle d’évolution microstructurale du combustible nucléaire dont les paramètres sont calculés à l’échelle atomique

De l’Angström au micron : un modèle d’évolution microstructurale du combustible nucléaire dont les paramètres sont calculés à l’échelle atomique

Matériaux et applications Physique de l’état condensé, chimie et nanosciences Physique du solide, surfaces et interfaces Sciences pour l’ingénieur

Résumé du sujet

La maîtrise du comportement des gaz de fission dans le combustible nucléaire (oxyde d’uranium) est un enjeu industriel important puisque leur relâchement ou leur précipitation limite l'utilisation du combustible à forts taux de combustion. Or ces phénomènes sont fortement influencés par l’évolution microstructurale du matériau aux défauts générés par l’irradiation (création de défauts ponctuels, agrégations de ceux-ci en cavités et bulles de gaz ou en boucles ou lignes de dislocation…). La dynamique d’amas (DA) est un modèle de type cinétique chimique permettant de décrire la nucléation/croissance des amas de défauts, leur contenu en gaz et le relâchement de celui-ci. Le modèle utilisé est paramétré à partir de données de base calculées à diverses échelles (ab initio, potentiels empiriques, Monte Carlo). Ce modèle rend déjà compte d’expériences de recuit d’UO2 implanté en atomes de gaz de fission et a mis en évidence le fort impact des défauts d’irradiation sur le relâchement gazeux. L’objectif de la thèse est d’une part d’améliorer le modèle et ses paramètres d’entrée, notamment le taux de création de défauts d’irradiation, et d’autre part d’étendre son domaine de validation en le confrontant à de nombreuses expériences issues de thèses récemment soutenues au département (mesure de relâchement gazeux par recuit d’échantillons implantés via un accélérateur d’ions, observation de cavités, bulles de gaz et boucles de dislocation par microscopie électronique à transmission, caractérisation du dommage par spectrométrie d’annihilation de positons). Le candidat sera donc amené à faire évoluer certains des sous-modèles constitutifs de la DA, interpréter et simuler l’ensemble des expériences disponibles. En parallèle cela permettra d’affiner la paramétrisation du modèle.
Ce sujet de modélisation présente l’intérêt pour le candidat d’articuler à une dimension “théorique” (amélioration du modèle), ainsi que de physique numérique (simulation en Dynamique Moléculaire de cascades de déplacements) une dimension “expérimentale” (interprétation d’expériences déjà réalisées, voire conception et suivi de nouvelles expériences). Ainsi, l’approche d’un ensemble varié de techniques d’observation et de mesure ouvriront au candidat le monde de la physique expérimentale et complèteront son profil. Le candidat aura également à animer des collaborations dans le but d’analyser les données expérimentales, de développer l’outil de calcul ou de spécifier des calculs atomistiques complémentaires. Il pourra aussi bénéficier d’un environnement de collaboration académique.
Ce travail offre une position centrale et un point de vue synthétique sur la physique du combustible en irradiation. Il vous permettra de contribuer au développement de la physique numérique appliquée à une démarche multiéchelle de modélisation. Vous découvrirez en quoi des outils de simulation basés sur les données microscopiques les plus fondamentales obtenues par le calcul atomistique permettent de traiter et expliquer des situations pratiques.

Pour aller plus loin :
Skorek (2013). Étude par Dynamique d’Amas de l’influence des défauts d’irradiation sur la migration des gaz de fission dans le dioxyde d’uranium. Univ. Aix-Marseille. http://www.theses.fr/2013AIXM4376
Bertolus et al. (2015). Linking atomic and mesoscopic scales for the modelling of the transport properties of uranium dioxide under irradiation. Journal of Nuclear Materials, 462, 475–495.

Laboratoire

Département d’Etudes des Combustibles
Service d’Etudes de Simulation du Comportement du combustibles
Laboratoire de Modélisation Multi-échelles des Combustibles
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down