Dans la plupart des cycles parasitaires, la phase libre passe par un stade d'œuf, qui est libéré par l'hôte dans l'environnement via une matrice fécale complexe, qui présente des concentrations d'œufs très variables et souvent faibles. La méthode de détection classique repose sur l’observation microscopique de ces œufs, ce qui implique une préparation fastidieuse et longue de l'échantillon pour concentrer les œufs, avec des valeurs de sensibilité très variables. Cette détection est cruciale car une fois dispersés, les œufs contaminent l'environnement et les denrées alimentaires, entraînant des cas de zoonoses parasitaires chez l'homme.
La détection dans les matrices environnementales et alimentaires est encore plus complexe que pour les matières fécales en raison du très faible nombre d'œufs présents : 1 à 10 par échantillon dans la grande majorité des cas. La thèse vise à développer un système d'imagerie sans lentille grand champ, qui permettra de compter et d'identifier des œufs de parasites dans des matrices complexes, tout en augmentant la sensibilité. Cela permettra d'automatiser la détection, ouvrant ainsi des perspectives d'investigation sur un plus grand nombre d’échantillons, pour une meilleure veille sanitaire.