Le sujet de thèse se concentre sur l'amélioration de la fiabilité des modèles de deep learning, en particulier dans la détection des échantillons hors distribution (OoD), qui sont des points de données différents des données d'entraînement et peuvent entraîner des prédictions incorrectes. Cela est particulièrement important dans des domaines critiques comme la santé et les véhicules autonomes, où les erreurs peuvent avoir des conséquences graves. La recherche exploite les modèles de base de la vision (VFMs) comme CLIP et DINO, qui ont révolutionné la vision par ordinateur en permettant l'apprentissage à partir de données limitées. Le travail proposé vise à développer des méthodes qui maintiennent la robustesse de ces modèles pendant le fine-tuning, garantissant qu'ils peuvent toujours détecter efficacement les échantillons OoD. En outre, la thèse explorera des solutions pour gérer les changements de distribution des données au fil du temps, un défi courant dans les applications du monde réel. Les résultats attendus incluent de nouvelles techniques pour la détection OoD et des méthodes adaptatives pour les environnements dynamiques, améliorant ainsi la sécurité et la fiabilité des systèmes d'IA dans des scénarios pratiques.