



L'objectif de cette thèse est de développer de nouvelles méthodes d'évaluation clinique utilisant des technologies haptique surfaciques, développées au CEA List, et des algorithmes de machine learning pour tester et mesurer l'intégration tactile-motrice. En particulier, la thèse investiguera et validera le développement d'un pipeline d'analyse multimodale qui convertit les signaux haptique et les données des exercices de dextérité (c'est-à-dire les événements de stimulation tactile, la cinématique des doigts, les forces de contact et le timing en millisecondes) en biomarqueurs fiables et interprétables de la perception tactile et du couplage sensorimoteur, puis classera les schémas d'intégration normatifs par rapport aux schémas atypiques avec une fidélité clinique pour l'évaluation.
Résultats attendus : une nouvelle technologie et des modèles pour la mesure rapide et réalisable des déficits tactuo-moteurs en milieu clinique, avec une validation initiale pour différents troubles du neurodéveloppement (c'est-à-dire la psychose, le trouble du spectre autistique et la dyspraxie). Les méthodes développées et les données collectées fourniront :
(1) une bibliothèque de caractéristiques ouverte et versionnée pour l'évaluation tactuo-motrice ;
(2) des classifieurs avec des points de fonctionnement prédéfinis (sensibilité/spécificité) ;
(3) et une pipeline « edge-ready » sur le dispositif, c'est-à-dire capable de fonctionner localement sur une tablette tout en respectant les contraintes de latence, de calcul et de confidentialité des données. Le succès sera mesuré par la reproductibilité des caractéristiques, des tailles d'effet cliniquement significatives et une logique de décision interprétable qui se rapporte à la neurophysiologie connue plutôt qu'à des artefacts.

