



Les accélérateurs laser-plasma à champs de sillage (LWFAs) peuvent produire des gradients d'accélération supérieurs à 100 GV/m, ouvrant la voie à la réduction de la taille et du coût des futurs accélérateurs haute énergie pour des applications en rayonnement synchrotron, lasers à électrons libres, ainsi que des applications médicales et industrielles émergentes.
L’augmentation de l’énergie et de la charge du faisceau nécessite à la fois une maturité technologique et des schémas d'accélération innovants. Les configurations multi-étages — connectant plusieurs étages d'accélération plasma — offrent des avantages clés : augmenter l'énergie du faisceau au-delà des limites d'une cellule unique et améliorer la charge totale et/ou la cadence de répétition. Ces systèmes visent à surmonter les limitations des accélérateurs mono-étage tout en maintenant ou améliorant la qualité du faisceau à plus hautes énergies.
Concevoir un accélérateur délivrant des faisceaux stables, reproductibles et de haute qualité nécessite une compréhension approfondie de la physique de l'accélération plasma et du transport de faisceau entre les étages successifs.
S'appuyant sur l'expertise du DACM du CEA Paris-Saclay, cette thèse se concentrera sur les études physiques et numériques nécessaires pour proposer une conception intégrée d'un LWFA multi-étages, avec une attention particulière à l'optimisation de tous les composants —cellule plasma et lignes de transport — afin de préserver la qualité du faisceau en termes de taille transverse, divergence, émittance et dispersion en énergie.

