Le bâtiment réacteur représente la troisième barrière de confinement dans les centrales nucléaires. Il a pour rôle de protéger l’environnement en cas d’accident hypothétique en limitant les rejets vers l’extérieur. Sa fonction est donc étroitement liée à son étanchéité qu’il doit conserver durant toute sa durée de fonctionnement. Classiquement, l’estimation du taux de fuite s’appuie sur une bonne connaissance de l’état hydrique et des potentiels désordres mécaniques, associés à des lois de transfert (comme la perméabilité) dans une démarche de simulation chaînée (thermo-)hygro-mécanique. Si le comportement mécanique de la structure est aujourd’hui globalement maîtrisé par le recours à des outils de simulation avancés, des progrès restent nécessaires pour améliorer la compréhension et la quantification des écoulements. C’est particulièrement le cas en présence d’hétérogénéités (fissures, nid de cailloux, reprise, armatures, câbles, etc.) qui représentent autant de situations pouvant perturber localement la perméabilité. C’est dans ce cadre que se place le sujet de thèse proposé. Il s’agira d’améliorer la compréhension et la représentation des écoulements à travers une structure en béton armé en s’appuyant sur une démarche combinant essais expérimentaux et modélisation. Une première analyse permettra de définir un plan d’expérience optimisé selon plusieurs configurations (chemins de fuite, type d’écoulement, température, saturation…) qui sera ensuite mise en œuvre durant la thèse. Les résultats seront analysés afin de caractériser empiriquement l’influence du chemin de fuite sur les lois macroscopiques classiquement utilisées (loi de Darcy). Une approche de simulation plus fine sera ensuite développée, en s’appuyant la méthode d’éléments finies. L’objectif sera de reproduire les résultats expérimentaux et les étendre au comportement des enceintes de confinement, améliorant ainsi les outils de modélisation actuellement disponibles.