Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Thèses   /   Effets électroniques dans les cascades de collisions dans le GaN

Effets électroniques dans les cascades de collisions dans le GaN

Matériaux et applications Physique de l’état condensé, chimie et nanosciences Physique du solide, surfaces et interfaces Sciences pour l’ingénieur

Résumé du sujet

Dans les environnements radiatifs tels que l'espace et les installations nucléaires, les composants microélectroniques sont soumis à des
flux intenses de particules qui détériorent leur fonctionnement en dégradant les matériaux les constituant. Les particules entrent en
collision avec des atomes dans les matériaux semi-conducteurs, leur cèdent une partie de leur énergie cinétique et les éjectent de
leur site cristallin. Les atomes éjectés vont à leur tour générer des collisions, formant une cascade de collisions qui conduira à la
création de défauts de déplacements. De plus, les particules chargées primaires ou secondaires (issues de l’interaction avec un
neutron par exemple) vont aussi interagir spécifiquement avec les électrons du réseau et leur céder une partie de leur énergie en générant des paires électron-trou. On parle de freinage électronique. Une simulation complète de cascade de collisions se doit donc d’intégrer
ces deux éléments : collisions avec les noyaux des atomes et effets électroniques.
La méthode de prédilection pour la simulation de cascades de collisions à l’échelle atomique est la dynamique moléculaire (DM).
Cependant, les effets électroniques ne sont pas inclus car la méthode ne traite pas explicitement les électrons. Pour pallier à ce
problème, des modules additionnels à la DM imitant le plus fidèlement possible les effets des électrons doivent être utilisés. L’état de
l’art en ce qui concerne la simulation du freinage électronique d’un projectile dans un solide est la méthode de la théorie de la
fonctionnelle de la densité dépendante du temps (TDDFT). L’objectif de cette thèse est de combiner DM et TDDFT pour réaliser des
simulations de cascades de collisions dans le GaN et étudier l’influence des effets électroniques. En plus de compétences transverses
communes à toute thèse, le/la candidat.e sera amené.e à développer des compétences dans plusieurs méthodes de modélisation
à l’échelle atomique, en physique du solide, en interactions particules-matière, en environnement linux ainsi qu’en programmation.

Laboratoire

DCRE
DCRE
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down