Contexte :
Les batteries lithium-ion et sodium-ion de génération futures sont essentielles pour la transition énergétique et l'électrification des transports. Garantir en premier lieu la longévité, les performances mais aussi la sécurité des batteries nécessite une compréhension approfondie des mécanismes de dégradation à différentes échelles.
Objectif de Recherche :
Développer des méthodologies innovantes de diagnostic et de pronostic des batteries en exploitant la fusion de données multi-capteurs et des approches de type Physics-Informed Machine Learning (PIML), combinant des modèles théoriques physiques de batteries avec des algorithmes d'apprentissage profond.
Approche Scientifique :
Établir les corrélations entre les mesures multi-physiques et les mécanismes de dégradation des batteries
Explorer des approches hybrides PIML pour la fusion de données multi-physiques
Développer des architectures d'apprentissage intégrant les contraintes physiques tout en traitant des données hétérogènes
Étendre les méthodologies aux technologies émergentes de batteries sodium-ion
Méthodologie :
La recherche utilisera une base de données de cellules multi-instrumentées (capteurs acoustiques, électriques, thermiques, mécaniques, optiques) , analysant les signatures et modalités de chaque de mesures et développant des algorithmes PIML innovants qui optimisent la fusion de données multi-capteurs.
Résultats Attendus :
La thèse vise à fournir des recommandations précieuses pour l'instrumentation des systèmes de batteries, à développer des algorithmes de diagnostic et pronostic de trajectoires de vieillissement avancés et à contribuer significativement à l'amélioration de la fiabilité et de la durabilité des systèmes de stockage électrochimique, avec des impacts potentiels académiques et industriels.