Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Thèses   /   Estimation de l'état de santé et prédiction de la durée de vie restante de batterie lithium-ion par Physics-Informed Deep Learning

Estimation de l'état de santé et prédiction de la durée de vie restante de batterie lithium-ion par Physics-Informed Deep Learning

Data intelligence dont Intelligence Artificielle Défis technologiques Stockage électrochimique d’énergie dont les batteries pour la transition énergétique

Résumé du sujet

Contexte :
Les batteries lithium-ion et sodium-ion de génération futures sont essentielles pour la transition énergétique et l'électrification des transports. Garantir en premier lieu la longévité, les performances mais aussi la sécurité des batteries nécessite une compréhension approfondie des mécanismes de dégradation à différentes échelles.
Objectif de Recherche :
Développer des méthodologies innovantes de diagnostic et de pronostic des batteries en exploitant la fusion de données multi-capteurs et des approches de type Physics-Informed Machine Learning (PIML), combinant des modèles théoriques physiques de batteries avec des algorithmes d'apprentissage profond.
Approche Scientifique :

Établir les corrélations entre les mesures multi-physiques et les mécanismes de dégradation des batteries
Explorer des approches hybrides PIML pour la fusion de données multi-physiques
Développer des architectures d'apprentissage intégrant les contraintes physiques tout en traitant des données hétérogènes
Étendre les méthodologies aux technologies émergentes de batteries sodium-ion

Méthodologie :
La recherche utilisera une base de données de cellules multi-instrumentées (capteurs acoustiques, électriques, thermiques, mécaniques, optiques) , analysant les signatures et modalités de chaque de mesures et développant des algorithmes PIML innovants qui optimisent la fusion de données multi-capteurs.

Résultats Attendus :
La thèse vise à fournir des recommandations précieuses pour l'instrumentation des systèmes de batteries, à développer des algorithmes de diagnostic et pronostic de trajectoires de vieillissement avancés et à contribuer significativement à l'amélioration de la fiabilité et de la durabilité des systèmes de stockage électrochimique, avec des impacts potentiels académiques et industriels.

Laboratoire

Département de l’Electricité et de l’Hydrogène pour les Transports (LITEN)
Service Transverses pour Technologies de Conversion électrochimique et électrique
Laboratoire Electronique Enérgie et Puissance
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down