Le transport ionique est crucial pour déterminer la durabilité des matériaux à base de ciment et, par conséquent, l'extension de la durée de vie des (infra)structures en béton. Les phénomènes de transport déterminent la capacité de confinement du béton, essentielle à la conception et à la gestion des infrastructures en béton pour la production d'énergie. Dans la plupart des conditions de service, le béton se trouve dans un état non saturé. Un transport anormal a été observé dans les matériaux à base de ciment, et les raisons de ces écarts par rapport au comportement attendu d'autres matériaux poreux peuvent provenir de processus à l'échelle nanométrique.
A ce jour, la majorité des modélisations prédictives de la durabilité ne tiennent pas explicitement compte des processus à l’échelle nanométrique, pourtant fondamentaux pour déterminer les propriétés de transport. Des progrès récents ont été réalisés dans la quantification du comportement de l'eau confinée dans diverses phases présentes dans les systèmes cimentaires. Les silicates de calcium hydratés (C-S-H) sont la principale phase hydratée dans les matériaux à base de ciment et présentent des nanopores dans les gammes microporeuses et mésoporeuses. Cependant, les effets de la désaturation restent encore à élucider pleinement. Une compréhension fondamentale des processus de transport nécessite un cadre multi-échelle dans lequel l'information de l'échelle moléculaire se répercute à travers d'autres échelles pertinentes (en particulier, l'échelle mésoscopique associée à la porosité du gel C-S-H (~nm), la porosité capillaire et la zone de transition interfaciale (~µm) jusqu'à l'échelle macroscopique des applications industrielles dans les matériaux à base de ciment).
L’objectif de ce travail de doctorat est d’évaluer le transport ionique des chlorures, une espèce critique pour la durabilité du béton, en conditions non saturées en combinant des simulations à petite échelle, une modélisation multi-échelle et des expérimentations dans une approche ascendante. Le travail se concentrera sur le C-S-H. Le projet vise à caractériser les effets de la désaturation sur les processus nanométriques qui gouvernent le transport des chlorures.