La découverte de la fission en 1939 a profondément modifié notre connaissance de la physique nucléaire. Cette réaction permet de diviser des noyaux lourds comme l'uranium 235, en deux noyaux (fragments) plus légers, tout en libérant une grande quantité d'énergie. Les travaux de recherche sur la fission prennent la forme de modèles nucléaires servant à produire des bases de données nucléaires, qui sont essentiels pour simuler les réacteurs nucléaires. La qualité de ces données est encore insuffisante aujourd’hui, car notre compréhension fine de la fission reste très fragmentaire.
Ce travail de thèse vise à mieux décrire la génération du moment angulaire et l'énergie d'excitation des fragments de fission d’un point de vue expérimental et théorique. Ces recherches permettront à la fois de mieux comprendre le processus sous-jacent et d’améliorer le pouvoir de prédiction des outils de simulations, notamment les modèles utilisés pour calculer les échauffements gamma au sein d’un réacteur. Une partie du travail du doctorant consistera en l’exploitation des données acquises durant une thèse récente. Une autre partie sera la participation à des campagnes expérimentales complémentaires auprès du réacteur nucléaire de l’Institut Laue-Langevin (ILL), à l’aide du spectromètre LOHENGRIN afin de mesurer les rapports isomériques et les distributions en énergie cinétique des fragments de fission.
Le doctorant sera positionné au sein d’un laboratoire de physique nucléaire et de physique des réacteurs. Il développera des compétences en analyse de données, en physique nucléaire ainsi qu’en programmation informatique. Les langages utilisés seront C++ et python. Les débouchés sont la recherche en milieu académique ou industriel, également des postes de Data Scientist.