



La compréhension des propriétés électroniques des électrons de valence dans les nano-objets est à la fois d’un intérêt fondamental et essentielle pour la conception de nouveaux dispositifs optoélectroniques. Dans ces systèmes, le confinement des électrons en basse dimensionnalité leur confère des propriétés exceptionnelles.
Ces propriétés sont liées aux caractéristiques fondamentales de la matière et aux fluctuations quantiques associées. Récemment, l’intrication quantique et l’information quantique de Fisher ont été directement mises en relation avec des propriétés spectroscopiques. Part ailleurs, ces propriétés spectroscopiques sont accessibles par des expériences, telles que l’absorption, la photoémission et la diffusion inélastique des rayons X.
Récemment, nous avons montré que le formalisme largement utilisé pour étudier les nano-objets isolés n’était pas adapté, et que les propriétés optiques qui en avaient été déduites en étaient affectées. Nous avons mis en évidence, théoriquement et expérimentalement, que dans les objets bidimensionnels la réponse optique contenait, en plus de la contribution transverse, une résonance de type plasmon, correspondant à une réponse longitudinale. Le rôle de l’interface s’est révélé déterminant. Le projet que nous proposons cette année consiste à reconsidérer les propriétés optiques des objets unidimensionnels.
Une fois la méthodologie établie pour décrire la fonction diélectrique macroscopique en 1D, nous explorerons ses liens avec l’intrication quantique et l’information quantique de Fisher, qui n’ont encore jamais été évaluées pour des systèmes à basse dimensionnalité.

