Les batteries sodium-ion (Na-ion) suscitent un intérêt considérable en tant qu'alternative crédible aux batteries lithium-ion largement utilisées aujourd'hui. L'abondance du sodium, ainsi que l'utilisation potentielle de matériaux d'électrode sans éléments critiques dans leur composition, ont conduit à l'intensification de la recherche sur les batteries Na-ion. Le carbone dur (HC) est identifié comme l'électrode négative la plus appropriée pour cette technologie. Il n’existe toutefois pas de consensus concernant les mécanismes de stockage du sodium dans le HC, parce que les multiples précurseurs et méthodes de synthèse conduisent à des HC singulièrement différents qui ne fonctionnent évidemment pas de la même façon. Une grande base de données fournit des relations entre les paramètres de synthèse (précurseur, lavage, prétraitement, pyrolyse, broyage) et les propriétés du HC (porosité, structure, morphologie, chimie de surface, défauts), mais elle n’explique pas ces relations. Par conséquent, l'approche envisagée dans cette thèse est une modélisation multiphysique des performances du HC permettant de comprendre l'influence du précurseur et de la méthode de synthèse, en exploitant la grande base de données de caractérisation existante.