Les modèles vision-langage (VLMs) récents, comme BLIP, LLaVA et Qwen-VL, ont montré de bonnes performances sur des tâches multimodales, mais présentent encore des lacunes en raisonnement spatio-temporel. Les benchmarks actuels confondent souvent raisonnement visuel et connaissances générales, et ne sollicitent que peu de raisonnement complexe. De plus, ces modèles peinent à interpréter les relations spatiales fines et les scènes dynamiques, en raison d’une mauvaise exploitation des caractéristiques visuelles. Pour y remédier, des travaux récents (SpatialRGPT, SpaceVLLM, VPD, ST-VLM) ont introduit des innovations telles que l’intégration de graphes 3D, des requêtes spatio-temporelles ou l’apprentissage par instructions cinématiques. Cette thèse s’inscrit dans cette lignée en proposant une nouvelle approche pour améliorer le raisonnement spatio-temporel des VLMs grâce à des techniques avancées de représentation des données et d’architecture, avec des applications en robotique, analyse vidéo et compréhension d’environnements dynamiques.