Les alliages métalliques utilisés dans les applications nucléaires sont soumis à des températures relativement basses (inférieures à 450°C) pendant des temps importants (supérieurs à 10 ans). A ces températures, les cinétiques de transformation des microstructures contrôlées par la diffusion sont lentes. L’apparition de certaines phases indésirables, susceptibles de fragiliser le matériau, peut survenir après plusieurs années de service. Les coefficients de diffusion jouent donc un rôle crucial en tant que données d'entrée pour modéliser l'évolution de ces microstructures à l’aide de modèles phénoménologiques. Or, la détermination expérimentale des coefficients de diffusion à basse température (T < 600°C) est extrêmement délicate, notamment en raison de la nécessité de caractériser des longueurs de diffusion nanométriques, une difficulté accrue en présence d'irradiation.
Avec le développement de l’analyse chimique en microscopie électronique en transmission (MET) et de la sonde atomique tomographique (SAT), il est désormais possible d’accéder expérimentalement à de très faibles longueurs de diffusion et donc de déterminer des coefficients de diffusion à basse température à l’aide de super-réseaux, qui sont des empilements de couches nanométriques de compositions chimiques différentes. On peut même caractériser l’effet de l’irradiation sur la diffusion en réalisant des irradiations aux ions, permettant de simuler les modifications causées par l’irradiation neutronique sans activer les matériaux. L’objectif de la thèse porte sur le développement d’une méthodologie et la caractérisation de la diffusion hors et sous irradiation dans un système ternaire d’intérêt (Ni–Cr–Fe), représentatif des aciers et des alliages à haute entropie envisagés dans l’industrie nucléaire.
Ce sujet de thèse est une opportunité de travailler avec des techniques expérimentales de pointe, en étroite collaboration avec une équipe de théoriciens du même département, ainsi qu’avec des équipes spécialisées dans l’élaboration de super-réseaux de l’UTBM à Belfort et du CINAM à Marseille.