La durée de vie des dispositifs couches minces tel les dispositifs photovoltaïques Organiques (OPV) ou des modules Silicium (Si) photovoltaïques léger et/ou flexible de nouvelle génération est un point critique pour leur commercialisation. Il est notamment crucial de les encapsuler avec des matériaux hautement barrières aux gaz afin d’éviter leur dégradation selon différents mécanismes liés à l’insertion d’eau/oxygène qui peuvent être couplés à l’illumination. Cet objectif est d’autant plus complexe lorsque le dispositif, ainsi que son encapsulation, doivent être flexibles. Par ailleurs, l’éco-conception de cette nouvelle génération de modules flexibles amène aussi bien la question de la nature des matériaux d’encapsulation employés que celle de la fin de vie des matières constituant les modules. Par exemple, l’usage actuel de polymères fluorés pour l’encapsulation génère des produits toxiques en fin de vie et pourrait être substitué par l’usage de matériaux éco-conçus, potentiellement bio-sourcés, si les performance sont adaptées à la technologie photovoltaïque employée et à l’usage.
L’objectif de cette thèse sera tout d’abord d’étudier les propriétés physico-chimiques (barrières aux gaz, mécaniques, thermiques..) d’encapsulants bio-sourcés développés dans le cadre d’un projet national PEPR BioflexPV. Ces études concerneront aussi bien les matériaux de scellage que les capots flexibles. Par ailleurs, ces matériaux seront employés pour l’encapsulation de dispositifs réels OPV et Si flexibles afin d’en étudier la dégradation selon différentes conditions d’illumination, de température et d’hygrométrie. Ces études permettront de définir les mécanismes de dégradation mis en jeux selon la technologie photovoltaïque employée (OPV ou Si) et ainsi de définir les propriétés souhaitées pour les encapsulants bio-sourcés.