Dans le contexte de la réalité augmentée, réaliser des matrices de µLEDs RGB est la prochaine étape afin de miniaturiser et simplifier le système optique dans sa globalité. Afin de réaliser de tels dispositifs, une des approches envisagées est de réaliser des matrices de µLEDs en GaN/InGaN bleues et d’appliquer des convertisseurs de couleur vers le rouge et le vert au dessus de cette matrice. Cependant, les applications de réalité augmentée requièrent des dispositifs émissifs directifs, ce qui est à priori difficile à réaliser car l’émission spontanée des convertisseurs est à priori isotrope. Cependant il a récemment été démontré par le laboratoire Charles Fabry (thèse de E. Bailly et direction de cette thèse) que la combinaison de métasurfaces avec des convertisseurs couleurs pouvaient permettre de réaliser de l’émission directive. Le but de cette thèse est alors d’appliquer cette approche en la combinant avec des µLEDs bleues réalisées au CEA-LETI. Durant cette thèse l’étudiant designera les dispositifs afin de les rendre efficaces et avec une émission directive. Puis dans un deuxième temps des dispositifs seront réalisés en salle blanche au LETI et caractérisés opto-électriquement.
La première partie de cette thèse (le design) sera réalisée par l’étudiant principalement dans les locaux du laboratoire Charles Fabry sur le plateau de Saclay, puis il rejoindra le CEA-LETI au sein du LITE à Grenoble pour les aspects de caractérisation et de comparaison avec les simulations.
Les travaux du Laboratoire d'Intégration des Technologies Emissives portent sur l'intégration de la fabrication d'émetteurs µLED, OLED et LCD en environnement de type fonderie microélectronique sur silicium. Il s'agit par exemple d'améliorer les performances de micro-écrans sur ASIC tout en diminuant la taille caractéristique des pixels émetteurs, ou encore de démontrer de nouveaux usages de ces sources lumineuses dans le domaine des capteurs optiques biomédicaux.