Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Thèses   /   MÉTHYLATION DE L'ADN ET ORGANISATION 3D DU GÉNOME BACTÉRIEN

MÉTHYLATION DE L'ADN ET ORGANISATION 3D DU GÉNOME BACTÉRIEN

Bio-informatique, simulation bio-moléculaire Génomique, protéomique Sciences du vivant

Résumé du sujet

La méthylation de l'ADN chez les bactéries a été traditionnellement étudiée dans le contexte de la défense antiparasitaire. Cependant, les progrès du séquençage qui permettent l'analyse de la méthylation de l'ADN à l'échelle génomique se développent actuellement et ont propulsé une révolution épigénomique dans notre compréhension de l'étendue et de la pertinence physiologique de la méthylation. Généralement, la première étape de l'étude des impacts fonctionnels de la méthylation de l'ADN bactérien consiste à comparer l'expression globale des gènes entre des souches de type sauvage (WT) et des souches mutantes de méthyltransférase (MTase). Plusieurs études utilisant l'ARN-seq pour de telles comparaisons ont montré que la perturbation d'une seule MTase d'ADN entraîne souvent des dizaines, des centaines et parfois des milliers de gènes différentiellement exprimés (DE). Selon le modèle de compétition locale, la liaison compétitive entre une MTase et d'autres protéines liant l'ADN (par exemple, des facteurs de transcription) sur des sites de motifs spécifiques, affecte la transcription d'un gène voisin, entraînant une variation phénotypique au sein de la population bactérienne. Toutefois, si dans certains cas les effets régulateurs des MTases peuvent être attribués de manière concluante à la méthylation au niveau des promoteurs des gènes cibles, la grande majorité (>90%) des gènes DE n'ont pas de sites méthylés dans leurs régions promotrices, ce qui implique que les MTases ne sont pas des agents de régulation de la transcription, et que le modèle de compétition locale ne s'applique pas à la plupart des gènes DE. Une autre possibilité est que l'état de méthylation des motifs individuels régule l'expression d'un facteur de transcription, provoquant un large changement en aval dans l'expression de ses gènes cibles. Cependant, cette dernière hypothèse n'est pas suffisamment explicative pour un si grand nombre de gènes DE. Une hypothèse alternative concerne l'effet de la méthylation de l'ADN sur la topologie des chromosomes, en induisant des changements structurels qui modifient le répertoire des gènes exposés à la machinerie transcriptionnelle cellulaire. Nous avons récemment identifié CamA, une MTase core de Clostridioides difficile méthylant CAAAAA, qui joue un rôle dans la formation du biofilm, la sporulation et la transmission in vivo. De plus, dans une analyse ultérieure à grande échelle, nous avons découvert que CamA n'était que la partie émergée de l'iceberg, avec 45 % des espèces bactériennes de Genbank contenant au moins une MTase core ou quasi core, ce qui montre que ces dernières sont abondantes et suggère que leurs modifications épigénétiques sont également importantes pour les bactéries. En outre, des analogues de la S-adénosyl-l-méthionine (SAM) ont réussi à inhiber CamA, ce qui représente une première étape importante dans la création de thérapeutiques puissantes et sélectives ciblées sur l'épigénétique qui peuvent être exploitées comme nouveaux antimicrobiens.
Dans cette proposition de projet de doctorat, le candidat retenu est invité à déchiffrer l'interaction entre la méthylation bactérienne, l'organisation spatiale du génome et l'expression des gènes en répondant aux questions suivantes : i) la méthylation modifie-t-elle les domaines d'interaction chromosomique ? ii) les gènes DE et/ou les motifs de méthylation cibles sont-ils enrichis dans les limites des domaines d'interaction chromosomique modifiables ? iii) pouvons-nous modifier le méthylome (globalement ou localement) pour réprimer certains agents pathogènes humains ? Il / elle utilisera les technologies de séquençage Hi-C et long-read combinées à la génétique microbienne et à la génomique comparative pour faire progresser notre compréhension dans le domaine de l'épigénomique microbienne.

Laboratoire

Institut de biologie François JACOB
Département Genoscope
Laboratoire de séquençage
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down