Les cellules à oxyde solide (SOC) sont des systèmes de conversion d'énergie réversibles et efficaces pour la production d'électricité et d'hydrogène décarboné. Elles sont aujourd'hui considérées comme l'une des solutions technologiques clés pour la transition vers un marché de l'énergie renouvelable. Un SOC est constitué d'un électrolyte dense pris en sandwich entre deux électrodes poreuses. À ce jour, la commercialisation à grande échelle des SOC nécessite encore l'amélioration de leurs performances et de leur durée de vie. Dans ce contexte, les principales limitations en termes d'efficacité et de dégradation des SOCs ont été attribuées à l'électrode à oxygène conventionnelle en La0.6Sr0.4Co0.2Fe0.8O3. Pour résoudre ce problème, il a récemment été proposé de remplacer ce matériau par une électrode alternative basée sur le PrOx. En effet, ce matériau présente une activité électro-catalytique élevée pour la réduction de l'oxygène et de bonnes propriétés de transport. Les performances des cellules incorporant cette nouvelle électrode sont prometteuses et pourraient permettre d'atteindre les objectifs requis pour une industrialisation à grande échelle (c.-à-d -1,5A/cm2 à 1,3V à 750°C et un taux de dégradation de 0,5%/kh). Cependant, il a également été démontré que le PrOx subit des transitions de phase en fonction des conditions de fonctionnement de la cellule. L'impact de ces transitions de phase sur les propriétés de l'électrode et sur ses performancesest encore inconnu. Par conséquent, l'objectif de ce doctorat est d'acquérir une compréhension approfondie des propriétés physiques du PrOx et leur influence sur la performance de l'électrode à l’aide d’une méthodologie combinant des calculs ab-initio et la modélisation électro-chimique.