Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Thèses   /   Phénomènes de transport dans le plasma compagnon des électrons découplés: impact sur l'amortissement et extraplation à ITER

Phénomènes de transport dans le plasma compagnon des électrons découplés: impact sur l'amortissement et extraplation à ITER

Physique corpusculaire et cosmos Physique des plasmas et interactions laser-matière

Résumé du sujet

Les disruptions sont des interruptions brutales des décharges plasmas dans les tokamaks. Elles sont dues à des instabilités menant à la perte de l’énergie thermique et de l’énergie magnétique du plasma sur des laps de temps de l’ordre de quelques dizaines de millisecondes. Les disruptions peuvent générer des faisceaux d’électrons relativistes dits découplés qu’il est important de contrôler ou d’arrêter pour assurer une opération fiable des futurs tokamaks tels qu’ITER. Le sujet proposé se concentre sur l’amortissement des électrons découplés par injection massive de deutérium ou d’hydrogène dans le faisceau. Ce scénario conduit à une diminution drastique de l’énergie déposée sur la paroi par les électrons découplés, à travers deux phénomènes : une instabilité magnétohydrodynamique et l’absence de régénération des électrons découplés dans la perte finale du courant plasma. Ces deux conditions sont obtenues lorsque le plasma créé par l’interaction entre le faisceau d’électrons découplés et le gaz neutre reste suffisamment froid pour recombiner en grande partie. Le mécanisme de recombinaison fait appel à des processus de transport de l’énergie par les neutres et à une diminution de l’interaction entre les électrons découplés et le plasma de fond. Il montre les limites sur les tokamaks actuels, qui doivent être comprises pour pouvoir extrapoler aux futurs tokamaks. Il est donc proposé pour ce sujet de thèse de commencer par mieux caractériser expérimentalement le plasma froid : profils de densité, concentration en deutérium/hydrogène ou impuretés lourdes, profil de courant. On s’intéressera plus particulièrement aux quantités en rapport avec les phénomènes de transport dans le plasma : conduction de la chaleur, diffusion de la matière ou transport du rayonnement. Cette caractérisation expérimentale fera rapidement appel à de la modélisation numérique afin de confirmer le rôle des différents mécanismes de transport dans le maintien des conditions nécessaires à la dissipation du faisceau sans dommages. Une extrapolation vers ITER sera ensuite envisagée via les simulations.

Laboratoire

Institut de recherche sur la fusion par confinement magnétique
Service Tokamak Exploitation et Pilotage
Groupe Pilotage, Asservissements & Scénarios
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down