Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Le CEA accueille en ses laboratoires chaque année environ 1600 doctorants.
Thèses
Accueil / Thèses / Reconstruction numérique d’une cuve industrielle pour l’amélioration de l'instrumentation de suivi en temps réel
Reconstruction numérique d’une cuve industrielle pour l’amélioration de l'instrumentation de suivi en temps réel
Défis technologiquesInstrumentationSciences pour l’ingénieurSimulation numérique
Résumé du sujet
Dans un contexte de digitalisation de l’industrie et de surveillance en temps réel, il peut être crucial d’avoir accès en temps réel à des champs 3D (vitesse, viscosité, turbulence, concentration…), les réseaux de capteurs locaux étant parfois insuffisants pour avoir une bonne vision de ce qui se passe au sein du système. Ce sujet de thèse se propose d’investiguer une méthodologie adaptée à la reconstruction en temps réel de champs au sein d’une cuve industrielle instrumentée. Pour cela il est envisagé de se baser sur une modélisation éléments finis de la physique d’intérêt au sein de la cuve (fluidique, thermique…), et de méthodes de réduction de modèles basés sur le Machine Learning informé par la physique (approche capteurs virtuels). Le cœur de cette thèse sera également la mise au point de l’instrumentation d’une cuve et de la chaine d’acquisition associée, d’une part pour la validation des modèles, et d’autre part pour la génération d’une base de données pour l’application de la méthodologie.
Laboratoire
Département Systèmes (LETI)
Service Systèmes de Capteurs, électroniques pour l’Energie