Les crayons combustibles des réacteurs nucléaires à eau pressurisée sont constitués de pastilles d’oxyde d’uranium empilées dans des tubes en alliages de zirconium. En réacteur, ces matériaux subissent des sollicitations mécaniques conduisant à leur déformation irréversible. Afin de garantir la sureté et augmenter la performance des réacteurs, ces déformations doivent être modélisées et prédites de la façon la plus précise possible. De façon à encore améliorer la prédictivité des modèles, le caractère polycristallin de ces matériaux ainsi que les mécanismes physiques de déformation doivent être pris en compte. C’est l’objectif de cette étude qui consiste à développer un modèle numérique multi-échelle à base physique de la gaine des crayons combustible.
Le comportement mécanique des matériaux métalliques est généralement modélisé en considérant ceux-ci comme homogènes. Or, les phénomènes de plasticité cristalline à l’échelle des grains ainsi que le caractère polycristallin de ces matériaux pilotent au premier ordre leur comportement. Afin de prendre en compte leur caractère hétérogène, des modèles polycristallins, auto-cohérents en champ moyen, basés sur la théorie de l’homogénéisation des matériaux hétérogènes sont utilisés depuis de nombreuses années. Récemment, un modèle polycristallin, développé dans un cadre linéaire et isotherme, a pu être couplé à des calculs par éléments finis 1D axisymétriques pour simuler la déformation des gaines en réacteur. Un historique de chargement mécanique complexe, imitant les sollicitations subies par la gaine, a pu être simulé.
L’objectif de ce travail de thèse est d’étendre le domaine d’application de ce modèle notamment en l’appliquant à un cadre non-linéaire afin de simuler des sollicitations à forte contrainte, de l’étendre à des sollicitations anisothermes mais également de réaliser des simulations par éléments finis en 3D avec en chaque élément et chaque pas de temps une simulation par le modèle polycristallin. Ces développements théoriques et numériques seront finalement appliqués à la simulation du comportement des crayons combustibles en situation de rampe de puissance grâce à son intégration à une plateforme logiciel utilisée pour des applications industrielles. Cette approche permettra de mieux évaluer les marges disponibles pour faire fonctionner le réacteur de façon plus flexible, permettant ainsi de s’adapter à l’évolution du mix énergétique et cela en toute sécurité.