Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Thèses   /   Transformer de vision multimodale efficace pour système embarqué

Transformer de vision multimodale efficace pour système embarqué

Data intelligence dont Intelligence Artificielle Défis technologiques Informatique et logiciels Sciences pour l’ingénieur

Résumé du sujet

La thèse proposée se concentre sur l'optimisation des transformers multimodaux de vision (ViT) pour la segmentation panoptique d'objets, en explorant deux axes principaux. Il s'agit d'abord de développer un pipeline de fusion polyvalent pour intégrer des données multimodales (RGB, IR, profondeur, événements, nuages de points), en exploitant les relations d'alignement inter-modales. Ensuite, une approche combinant le pruning et la quantification à précision mixte sera étudiée. L'objectif global est de concevoir des modèles ViT multimodaux légers, adaptés aux contraintes des systèmes embarqués, tout en optimisant leurs performances et en réduisant la complexité computationnelle.

Laboratoire

Département Systèmes et Circuits Intégrés Numériques (LIST)
DSCIN
Laboratoire Intelligence Artificielle Embarquée
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down