



Le maclage est un mécanisme de déformation displacif, caractérisé par une déformation continue de la matière. Bien que largement étudié pour d’autres matériaux industriels comme les alliages de titane, ce mécanisme de plasticité reste peu connu et modélisé de manière incomplète pour des structures cristallographiques complexes. Pourtant, du fait du nombre réduit de symétries de ces structures, le glissement de dislocations s’avère insuffisant pour accommoder la déformation selon certaines directions de chargement, nécessitant l’activation du maclage. C'est le cas pour l'étain, qui possède une structure tétragonale. En particulier, le maclage contribue fortement à la réponse mécanique de l'étain aux forts taux de déformations et aux faibles températures. Dans les régimes intermédiaires de température et de taux de déformation, une compétition entre plasticité par dislocations et par maclage peut s’installer, rendant cruciale la description du couplage entre ces deux phénomènes. En proposer une meilleure description permettra d’apporter un nouvel éclairage sur les données expérimentales disponibles au CEA DAM. L'objectif de la thèse est de dérouler une démarche multiéchelle, de la dynamique moléculaire jusqu'à l'échelle du milieu continu, validée sur l'expérience, pour aboutir à un modèle permettant la description du comportement de l'étain sur une large gamme de températures et de taux de déformation.

