



Les méthodes LBM (Lattice Boltzmann Methods) sont des techniques numériques utilisées pour simuler des phénomènes de transport dans des systèmes complexes. Elles permettent de modéliser le comportement des fluides en termes de particules qui se déplacent sur une grille discrète (un "réseau" ou lattice). Contrairement aux méthodes classiques, qui résolvent directement les équations différentielles des fluides, les méthodes LBM simulent l'évolution des fonctions de distribution des particules de fluide dans un espace discret, en utilisant des règles de propagation et de collision.
Le choix du réseau dans les méthodes LBM est une étape cruciale, car il affecte directement la précision, l'efficacité et la stabilité des simulations. Le réseau détermine la manière dont les particules de fluide interagiront et se déplaceront dans l'espace, ainsi que la façon dont la discrétisation de l'espace et du temps est effectuée.
Les méthodes LBM présentent un parallélisme naturel, car les calculs à chaque point de la grille sont relativement indépendants. Les méthodes LBM par rapport aux méthodes CFD classiques permettent de mieux capturer certains phénomènes complexes (comme les écoulements multiphasiques, turbulents ou en milieux poreux) car elles reposent sur une modélisation mésoscopique du fluide, directement dérivée de la cinétique des particules, plutôt que sur une résolution macroscopique des équations de Navier–Stokes. Cette approche permet une représentation plus fine des interfaces, des effets non linéaires et des interactions locales, souvent difficiles à modéliser correctement avec les méthodes CFD classiques. Les méthodes LBM permettent donc, à moindre coût, de capturer des phénomènes complexes. Des travaux récents ont notamment montré qu'il était possible, avec les LBM, de retrouver la courbe de refroidissement de Nukiyama (ébullition en vase) et, ainsi, de calculer avec précision le flux critique. Ce flux correspond à une ébullition en masse, appelée crise d’ébullition, qui se traduit par une dégradation soudaine du transfert thermique.
Le flux critique représente un enjeu crucial pour les dispositifs expérimentaux (DEX) du Réacteur Jules Horowitz, car ils sont refroidis par de l'eau en convection naturelle (dispositifs de type fuel capsule) ou forcée (dispositifs de type boucle). Ainsi, afin de garantir le bon refroidissement des DEX et la sûreté du réacteur, il convient de s'assurer que, sur la gamme de paramètres étudiés, le flux critique ne soit pas atteint. Il doit donc être déterminé avec précision. Les études précédentes menées sur un DEX de type fuel-capsule à l’aide du code NEPTUNE-CFD (méthodes CFD classique) ont montré que la modélisation est limitée à une région située loin du flux critique. De façon générale, les écoulements à fort taux de vide (supérieurs à 10%) ne peuvent être résolues aisément par les approches classiques de la CFD.
L'étudiant sera amené, dans un premier temps, à définir un réseau pour appliquer les méthodes LBM sur un dispositif du RJH en convection naturelle. Il consolidera les résultats sur le flux critique obtenus sur cette configuration en les comparant aux données disponibles. Enfin, des calculs exploratoires en convection forcée (régime laminaire à turbulent) seront menés.
L’étudiant sera accueilli au sein de l’institut IRESNE.

