



Les progrès exponentiels du calcul haute performance ont permis le développement de simulations atomistiques à très grande échelle, capables de modéliser des systèmes contenant des milliards, voire des milliers de milliards d’atomes. Cependant, ces simulations génèrent des volumes de données colossaux, rendant le stockage et le post-traitement classiques de plus en plus coûteux et limitants. L’analyse in situ, réalisée directement pendant la simulation, apparaît alors comme une solution essentielle pour réduire le volume de données enregistrées, en ne conservant que l’information pertinente.
Dans ce contexte, le suivi 4D (espace et temps) de l’évolution microstructurale des matériaux soumis à des conditions extrêmes constitue un enjeu scientifique majeur. Les simulations atomistiques offrent une résolution spatiale permettant l’observation détaillée des défauts cristallins tels que les dislocations, le maclage, les lacunes et les pores, qui jouent un rôle clé dans les transformations de phase, la plasticité, la fusion/solidification et l’endommagement des matériaux. Le suivi temporel de ces structures permet d’analyser leurs mécanismes de formation, d’évolution et d’interaction, ainsi que leurs corrélations spatiales et temporelles.
Ce travail s’appuie sur la plateforme de calcul exaNBody et sur une méthode de clustering in situ développée dans le code ExaStamp, basée sur la projection des données atomiques sur une grille eulérienne 3D et leur traitement en temps réel. L’objectif est d’étendre cette approche à une dimension temporelle complète afin de suivre l’évolution des clusters en 4D. Cette extension permettra une analyse dynamique par graphes, offrant un accès aux propriétés temporelles des structures, à leurs trajectoires et à leurs comportements collectifs. À terme, ces avancées contribueront à améliorer la compréhension des mécanismes microscopiques hors équilibre et à développer des modèles prédictifs plus précis en science des matériaux.

