Qui sommes-nous ?
Espace utilisateur
Formation continue
Credit : L. Godart/CEA
D’un jour à plusieurs semaines, nos formations permettent une montée en compétence dans votre emploi ou accompagnent vers le retour à l’emploi. 
Conseil et accompagnement
Crédit : vgajic
Fort de plus de 60 ans d’expériences, l’INSTN accompagne les entreprises et organismes à différents stades de leurs projets de développement du capital humain.
Thèses
Accueil   /   Thèses   /   Effet du rayonnement gamma sur les mémoires non-volatile à base de hafnia pour des applications en environnements extrêmes

Effet du rayonnement gamma sur les mémoires non-volatile à base de hafnia pour des applications en environnements extrêmes

Défis technologiques Matériaux et procédés émergents pour les nanotechnologies et la microélectronique Physique de l’état condensé, chimie et nanosciences Physique du solide, surfaces et interfaces

Résumé du sujet

L’émergence des mémoires ferroélectriques à base de HfO2 a ouvert un nouveau paradigme pour le calcul embarqué à très basse consommation d’énergie. L’oxyde d’hafnium est pleinement compatible avec la technologie CMOS et est intrinsèquement à basse consommation d’énergie, trois ordres de grandeur plus faible que d’autres technologies émergentes de mémoires non-volatile.
Ces avantages s’alignent avec les applications stratégiques dans l’espace, la défense, le médical, la sûreté nucléaire et le transport lourd, où l’électronique doit faire face aux environnements extrêmes d’irradiation.
L’imprint induit un décalage de la réponse polarisation-tension (P-V) sur l’axe du voltage, attribué au piégeage/dépiégeage de charge, épinglement des domaines et aux défauts chargés tels que les lacunes d’oxygène. Tous ces phénomènes peuvent être accentués par l’irradiation.
Le projet utilisera des techniques avancées de spectroscopie des photoélectrons, notamment la photoémission induite par des rayons X durs avec le rayonnement synchrotron, ainsi que des analyses complémentaires de structure par la microscopie électronique à haute résolution, la diffraction des rayons X et la microscopie en champ proche. Les caractérisations expérimentales seront accompagnées par des calculs théoriques pour simuler la réponse du matériau à l’irradiation.
Ce travail sera développé dans le cadre d’une collaboration étroite entre le CEA/Leti à Grenoble, fournissant les échantillons, les dispositifs intégrés et les caractérisations électriques à l’échelle du wafer, et le CEA/Iramis à Saclay où le doctorant sera basé, pour l’ensemble des analyses des propriétés des matériaux, les irradiations, les expériences avec le rayonnement synchrotron et les caractérisation à l’échelle du dispositif.

Laboratoire

Institut rayonnement et matière de Saclay
Service de Physique de l’Etat Condensé
Laboratoire d’Etude des NanoStructures et Imagerie de Surface
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down