



La production d'électricité par l'énergie nucléaire joue un rôle crucial dans la transition énergétique, grâce à son faible impact carbone. Pour améliorer continuellement la sécurité et les performances, il est indispensable de développer de nouvelles connaissances et outils.
Le cœur d'un réacteur nucléaire est constitué de milliers de crayons combustibles traversés par un écoulement turbulent. Ce flux peut provoquer des vibrations, pouvant entrainer une usure. Deux échelles d'écoulement sont identifiées : une échelle locale, où le fluide interagit avec les crayons, et une échelle globale, représentant la distribution de l’écoulement dans le cœur. L'échelle locale nécessite des simulations CFD et un couplage fluide-structure, tandis que l'échelle globale peut être modélisée par des approches moyennes, comme les simulations de milieux poreux.
Les simulations couplées d'interaction fluide-structure (FSI) à l'échelle CFD sont limitées à de petits domaines. Pour surmonter cette limitation, des approches multi-échelles sont requises, combinant simulations de milieu poreux à grande échelle et simulations CFD détaillées à petite échelle. L'objectif de la thèse est de développer des méthodes pour synthétiser la turbulence à partir des résultats des simulations de milieu poreux, afin d'améliorer les conditions aux limites pour les simulations CFD. Le candidat étudiera d'abord comment les modèles de turbulence existants peuvent fournir des détails sur le flux turbulent à l'échelle du composant, puis comment synthétiser la turbulence pour les simulations CFD locales.
Ce projet de thèse fait l’objet d’une collaboration entre l'institut IRESNE (CEA) et l’ASNR. La thèse sera réalisée sur le site de Cadarache (principalement à l'ASNR). Le financement sera assuré par un MSCA Doctoral Network. Le doctorant sera intégré dans un réseau de 17 doctorants, pour être éligible le candidat devra avoir résider au maximum 12 mois sur les 36 derniers en France.

