Optimizing tumor dose delivery requires advanced treatment techniques. One promising approach focuses on refining beam delivery through ultra-high dose rate irradiation (UHDR), with temporal optimization being a key strategy. Recent studies highlight the effectiveness of FLASH irradiation using electrons, demonstrating similar tumor inhibition capabilities as gamma rays but with reduced damage to healthy tissue. To fully harness this potential, we are exploring innovative beams, such as high energy electron beams, which offer instantaneous dose rates and per-pulse doses many times higher than those produced by conventional radiation sources. However, accurately monitoring and measuring these beams remains a significant challenge, primarily due to the high dose rate.
The Sensors and Instrumentation Laboratory (CEA-List) will collaborate with the Institut Curie as part of the FRATHEA project. We propose the development of a novel diamond-based monitor, connected to associated electronics, to achieve precise measurements of dose and beam shape for high-rate electron and proton beams. Interdisciplinary experimental techniques, including diamond growth, device microfabrication, device characterization under radioactive sources, and final evaluation with electron beam, will be used for prototyping and testing the diamond beam monitor.
As part of the FRATHEA project, the PhD student will work on the following tasks:
• Growth of optimized single-crystal chemical vapor-deposited (scCVD) diamond structures
• Characterization of the electronic properties of the synthesized diamond materials
• Estimation of the dose response characteristics of a simplified prototypes
• Fabrication of a pixelated beam monitor
• Participation in beam times at the Institut Curie (an other institutes) for devices testing in clinical beams
Required Skills:
• Strong background in semiconductor physics and instrumentation
• Knowledge of radiation detectors and radiation-matter interactions
• Ability to work effectively in a team and demonstrate technical rigor in measurements
Additional Skills:
• Knowledge of electronics, including signal processing, amplifiers, oscilloscopes, etc.
• Familiarity with device fabrication and microelectronics
• Previous experience working with diamond materials
Profile:
• Master's level (M2) or engineering school, with a specialization in physical measurements
• Adherence to radiation protection regulations (category B classification required)
PhD Duration: 3 years
Start Date: Last semester of 2025
Contact:
Michal Pomorski : michal.pomorski@cea.fr
Guillaume Boissonnat: guillaume.boissonnat@cea.fr